Permeation of roxarsone and its metabolites increases caco-2 cell proliferation.
نویسندگان
چکیده
The benzenearsonate, Roxarsone, has been used since 1944 as an antimicrobial, growth-promoting poultry feed additive. USGS and EPA report that Roxarsone (4-hydroxy-3-nitrobenzenearsonate) and metabolites, including AHBA (3-amino-4-hydroxybenzenearsonate), contaminate waterways at greater than 1100 tons annually. To assess human impact of these organic arsenic water contaminants, it was important to study their potential absorption. The human adenocarcinoma cell line, Caco-2, is a model for intestinal absorption. We found proliferative effects on Caco-2 cells at micromolar levels of these compounds, as monitored by [3H]-thymidine incorporation into DNA. Flow cytometry cell cycle analysis confirmed accumulation in S phase from 21% (control) to 36% (24 hour exposure to 10 μM AHBA). Confluent Caco-2 cells grown on collagen-coated Transwell plates were dosed on the apical side. After exposure, media from apical and basolateral sides were collected separately. Following removal of FBS by 30K centrifugal filtration, the benzenearsonates in the collected media were analyzed by HPLC. Analyses were at wavelengths in the ultraviolet/visible range where the absorbance values were linear with respect to concentration. Concentrations were calculated by comparison with analytically-prepared commercial standards. Results from cells dosed at 10 μM for 24 hours with AHBA, Roxarsone, or Acetarsone indicated 6% - 29% permeation occurring from apical to basolateral side, modeling absorption across intestinal epithelium to the circulatory system. Benzenearsonate feed additives are frequently applied in combination with antibiotics, raising additional health concerns. We conclude that micromolar levels of these benzenearsonates are adequate to stimulate Caco-2 cell proliferation.
منابع مشابه
The octanol/water distribution coefficients of ardipusilloside-I and its metabolites, and their permeation characteristics across Caco-2 cell monolayer
BACKGROUND Ardipusilloside-I (ADS-I) is a triterpenoid saponin extracted from Chinese medicinal herb Ardisiapusill A. DC. Previous studies have demonstrated the potent anti-tumor activities of ADS-I both in vitro and in vivo, and its main metabolites (M1 and M2) from human intestinal bacteria. However, the physicochemical properties and intestinal permeation rate of ADS-I and its metabolites ar...
متن کاملHyperproliferation of homocysteine-treated colon cancer cells is reversed by folate and 5-methyltetrahydrofolate.
BACKGROUND There is an increasing evidence, stemming from epidemiological studies as well as studies performed in human biopsies and animal and cell culture models, suggesting that folate is chemopreventive in colonic carcinogenesis. Hyperhomocysteinemia is frequently associated with folate deficiency. Homocysteine, an amino acid, is metabolized to methionine in a 5-methyltetrahydrofolate (5-MT...
متن کاملGut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 cells.
Gut microflora metabolize anthocyanins to phenolic acids and aldehydes. These metabolites may explain the relationship between anthocyanin consumption and reduced incidence of colon cancer. Here, all six major metabolites, along with a Cabernet Sauvignon anthocyanin extract, were incubated with Caco-2 cells at concentrations of 0-1000 microM over 72 h to determine effects on cell proliferation ...
متن کاملLow Levels of GSTA1 Expression Are Required for Caco-2 Cell Proliferation
The colonic epithelium continuously regenerates with transitions through various cellular phases including proliferation, differentiation and cell death via apoptosis. Human colonic adenocarcinoma (Caco-2) cells in culture undergo spontaneous differentiation into mature enterocytes in association with progressive increases in expression of glutathione S-transferase alpha-1 (GSTA1). We hypothesi...
متن کاملCytotoxicity of Two Species of Glaucium from Iran
Background: Numerous molecules in Papaveraceae family display interesting cytotoxic activities against tumor cell lines in vitro and hints of anticancer activities in vivo have been reported in a few cases. Objective: Numerous molecules in this family display interesting cytotoxic activities against tumor cell lines in vitro and hints of anticancer activities in vivo have been reported in a fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in biological chemistry
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2013